A Framework of Mining Semantic Regions from Trajectories

نویسندگان

  • Chun-Ta Lu
  • Po-Ruey Lei
  • Wen-Chih Peng
  • Ing-Jiunn Su
چکیده

With the pervasive use of mobile devices with location sensing and positioning functions, such as Wi-Fi and GPS, people now are able to acquire present locations and collect their movement. As the availability of trajectory data prospers, mining activities hidden in raw trajectories becomes a hot research problem. Given a set of trajectories, prior works either explore density-based approaches to extract regions with high density of GPS data points or utilize time thresholds to identify users’ stay points. However, users may have different activities along with trajectories. Prior works only can extract one kind of activity by specifying thresholds, such as spatial density or temporal time threshold. In this paper, we explore both spatial and temporal relationships among data points of trajectories to extract semantic regions that refer to regions in where users are likely to have some kinds of activities. In order to extract semantic regions, we propose a sequential clustering approach to discover clusters as the semantic regions from individual trajectory according to the spatial-temporal density. Based on semantic region discovery, we develop a shared nearest neighbor (SNN) based clustering algorithm to discover the frequent semantic region where the moving object often stay, which consists of a group of similar semantic regions from multiple trajectories. Experimental results demonstrate that our techniques are more accurate than existing clustering schemes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Framework for Trajectory Data Preprocessing for Data Mining

Trajectory data play a fundamental role to an increasing number of applications, such as traffic control, transportation management, animal migration, and tourism. These data are normally available as sample points. However, for many applications, meaningful patterns cannot be extracted from sample points without considering the background geographic information. In this paper we present a fram...

متن کامل

C-safety: a framework for the anonymization of semantic trajectories

The increasing abundance of data about the trajectories of personal movement is opening new opportunities for analyzing and mining human mobility. However, new risks emerge since it opens new ways of intruding into personal privacy. Representing the personal movements as sequences of places visited by a person during her/his movements semantic trajectory poses great privacy threats. In this pap...

متن کامل

Query Architecture Expansion in Web Using Fuzzy Multi Domain Ontology

Due to the increasing web, there are many challenges to establish a general framework for data mining and retrieving structured data from the Web. Creating an ontology is a step towards solving this problem. The ontology raises the main entity and the concept of any data in data mining. In this paper, we tried to propose a method for applying the "meaning" of the search system, But the problem ...

متن کامل

Dynamic Modeling of Trajectory Patterns using Data Mining and Reverse Engineering

The constant increase of moving object data imposes the need for modeling, processing, and mining trajectories, in order to find and understand the patterns behind these data. Existing works have mainly focused on the geometric properties of trajectories, while the semantics and the background geographic information has rarely been addressed. We claim that meaningful patterns can only be extrac...

متن کامل

Trajectory Data Analysis in Support of Understanding Movement Patterns: A Data Mining Approach

Recent developments in wireless technology, mobility and networking infrastructures increased the amounts of data being captured every second. Data captured from the digital traces of moving objects and devices is called trajectory data. With the increasing volume of spatiotemporal trajectories, constructive and meaningful knowledge needs to be extracted. In this paper, a conceptual framework i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011